19 research outputs found

    Bone health in children with Angelman syndrome at the ENCORE Expertise Center

    Get PDF
    Angelman syndrome (AS) is a rare genetic disorder due to lack of UBE3A function on chromosome 15q11.2q13 caused by a deletion, uniparental paternal disomy (UPD), imprinting center disorder (ICD), or pathological variant of the UBE3A gene. AS is characterized by developmental delay, epilepsy, and lack of speech. Although fractures are observed frequently in our clinical practice, there are few studies on bone health in AS. The aim of this study is to investigate bone health in children with AS. In this prospective cohort study, we describe bone health in 91 children with AS visiting the ENCORE Expertise Center for AS between April 2010 and December 2021. Bone health was assessed with the bone health index (BHI) in standard deviation score (SDS) measured by digital radiogrammetry of the left hand using BoneXpert software. Risk factors analyzed were age, sex, genetic subtype, epilepsy, anti-seizure medication use, mobility, body mass index (BMI), and onset of puberty. Children with AS had a mean BHI of −1.77 SDS (SD 1.4). A significantly lower BHI was found in children with a deletion (−2.24 SDS) versus non-deletion (−1.02 SDS). Other factors associated with reduced BHI-SDS were inability to walk and late onset of puberty. Children with a history of one or more fractures (22%) had a significantly lower BHI than children without fractures (−2.60 vs −1.56 SDS). Longitudinal analysis showed a significant decrease in BHI-SDS with age in all genetic subtypes. Conclusions: Children with AS have a reduced bone health. Risk factors are deletion genotype, no independent walking, and late onset of puberty. Bone health decreased significantly with age. What is Known: • Children with neurological disorders often have a low bone health and higher risk of fractures. • Little is known about bone health in children with Angelman syndrome (AS). What is New: • Children with AS showed a reduced bone health and this was significantly associated with having a deletion, not being able to walk independently, and late onset of puberty. • Longitudinal analysis showed a significant decrease in bone health as children got older.</p

    Autism Symptoms in Children and Young Adults With Fragile X Syndrome, Angelman Syndrome, Tuberous Sclerosis Complex, and Neurofibromatosis Type 1:A Cross-Syndrome Comparison

    Get PDF
    Objective: The etiology of autism spectrum disorder (ASD) remains unclear, due to genetic heterogeneity and heterogeneity in symptoms across individuals. This study compares ASD symptomatology between monogenetic syndromes with a high ASD prevalence, in order to reveal syndrome specific vulnerabilities and to clarify how genetic variations affect ASD symptom presentation. Methods: We assessed ASD symptom severity in children and young adults (aged 0-28 years) with Fragile X Syndrome (FXS, n = 60), Angelman Syndrome (AS, n = 91), Neurofibromatosis Type 1 (NF1, n = 279) and Tuberous Sclerosis Complex (TSC, n = 110), using the Autism Diagnostic Observation Schedule and Social Responsiveness Scale. Assessments were part of routine clinical care at the ENCORE expertise center in Rotterdam, the Netherlands. First, we compared the syndrome groups on the ASD classification prevalence and ASD severity scores. Then, we compared individuals in our syndrome groups with an ASD classification to a non-syndromic ASD group (nsASD, n = 335), on both ASD severity scores and ASD symptom profiles. Severity scores were compared using MANCOVAs with IQ and gender as covariates. Results: Overall, ASD severity scores were highest for the FXS group and lowest for the NF1 group. Compared to nsASD, individuals with an ASD classification in our syndrome groups showed less problems on the instruments' social domains. We found a relative strength in the AS group on the social cognition, communication and motivation domains and a relative challenge in creativity; a relative strength of the NF1 group on the restricted interests and repetitive behavior scale; and a relative challenge in the FXS and TSC groups on the restricted interests and repetitive behavior domain. Conclusion: The syndrome-specific strengths and challenges we found provide a frame of reference to evaluate an individual's symptoms relative to the larger syndromic population and to guide treatment decisions. Our findings support the need for personalized care and a dimensional, symptom-based diagnostic approach, in contrast to a dichotomous ASD diagnosis used as a prerequisite for access to healthcare services. Similarities in ASD symptom profiles between AS and FXS, and between NF1 and TSC may reflect similarities in their neurobiology. Deep phenotyping studies are required to link neurobiological markers to ASD symptomatology

    Examination of the genetic factors underlying the cognitive variability associated with neurofibromatosis type 1

    Get PDF
    Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder associated with cognitive deficits. The NF1 cognitive phenotype is generally considered to be highly variable, possibly due to the observed T2-weighted hyperintensities, loss of heterozygosity, NF1-specific genetic modifiers, or allelic imbalance. Methods: We investigated cognitive variability and assessed the contribution of genetic factors by performing a retrospective cohort study and a monozygotic twin case series. We included data of 497 children with genetically confirmed NF1 and an IQ assessment, including 12 monozygotic twin and 17 sibling sets. Results: Individuals carrying an NF1 chromosomal microdeletion showed significant lower full-scale IQ (FSIQ) scores than individuals carrying intragenic pathogenic NF1 variants. For the intragenic subgroup, the variability in cognitive ability and the correlation of IQ between monozygotic NF1 twin pairs or between NF1 siblings is similar to the general population. Conclusions: The variance and heritability of IQ in individuals with NF1 are similar to that of the general population, and hence mostly driven by genetic background differences. The only factor that significantly attenuates IQ in NF1 individuals is the NF1 chromosomal microdeletion genotype. Implications for clinical management are that individuals with intragenic NF1 variants that score <1.5–2 SD below the mean of the NF1 population should be screened for additional causes of cognitive disability

    Paediatric population neuroimaging and the Generation R Study: the second wave

    Get PDF

    Attention and motor deficits index non-specific background liabilities that predict autism recurrence in siblings

    Get PDF
    Abstract Background Recent research has demonstrated that subclinical autistic traits of parents amplify the effects of deleterious mutations in the causation of autism spectrum disorder (ASD) in their offspring. Here, we examined the extent to which two neurodevelopmental traits that are non-specific to ASD—inattention/hyperactivity and motor coordination—might contribute to ASD recurrence in siblings of ASD probands. Methods Data from a quantitative trait study of 114 ASD probands and their brothers, 26% of whom also had ASD, were analyzed. Autistic trait severity was ascertained using the Social Responsiveness Scale-2, attention/hyperactivity problems using the Achenbach System of Empirically Based Assessment, and motor coordination (in a subset of participants) using the Developmental Coordination Disorder Questionnaire. Results Among siblings (affected and unaffected), both categorical recurrence of ASD (Nagelkerke R 2 = 0.53) and quantitative ASD trait burden (R 2 = 0.55) were predicted by sibling ADHD and motor coordination impairment scores, even though these traits, on average, were not elevated among the unaffected siblings. Conclusions These findings in a clinical family cohort confirm observations from general population studies that inattention/hyperactivity and motor impairment—axes of behavioral development that are non-specific to ASD, and often appreciable before ASD is typically diagnosed—jointly account for over 50% of the variation in autistic impairment of siblings, whether ascertained quantitatively or categorically. This finding within a sibling design suggests that background ASD susceptibilities that are inherited but non-specific (“BASINS”) may contribute to additive genetic liability in the same manner that ASD-specific susceptibilities (such as parental subclinical ASD traits and deleterious mutations) engender ASD risk

    Cortical dysplasia and autistic trait severity in children with Tuberous Sclerosis Complex : a clinical epidemiological study

    No full text
    Tuberous Sclerosis Complex (TSC) is characterized by a high prevalence of autism spectrum disorders (ASD). Little is known about the relation between cortical dysplasia and ASD severity in TSC. We assessed ASD severity (using the Autism Diagnostic Observation Scale), tuber and radial migration line (RML) count and location, and cognitive functioning in 52 children with TSC and performed regression and mediation analyses. Tuber and RML count were strongly positively related to ASD severity. However, when correcting for cognitive functioning, the majority of associations became insignificant and only total tuber count remained associated to the severity of restricted/repetitive behaviors. Occipital RML count remained associated with overall ASD severity, and social communication/interaction deficit severity specifically. This study shows the important explanatory role of cognitive functioning in the association between cortical dysplasia and ASD severity, and the relevance of separately studying the two ASD subdomains
    corecore